
Replication and transparency

Stata Self-Learning Course

Overview

Replication and transparency
1. General remarks
2. Readability

3. Abstraction & automation
4. Folder structure
5. Version control
6. References & further reading

Overview

Replication and transparency
1. General remarks

General remarks

• Minimum aim: computational reproducibility
• Better: Other people understand your data & code and can

use it

• There are no universal guidelines for coding in Stata
• What follows is a compilation of different guidelines & own

experience
• No “best solution”, no guarantee for completeness

Replication and transparency

Stata Self-Learning Course

General remarks

Some key principles
• Code and data should be consistent

Ø Agree on standards such as naming conventions within your team

• Code and data should be as self-explanatory as possible &
sufficiently commented/documented
Ø Choose meaningful names for objects, comment workflow/decisions

from the beginning

• Code should be as simple & short as possible
Ø Only keep what is needed, structure your code

Replication and transparency

Stata Self-Learning Course

Overview

Replication and transparency

2. Readability

Readability of your code

• Structure your code to enhance readability
– Use line breaks & indentation
– Use * /* // for headings & comments
– Break code into multiple lines with /// or #delimit
Ø Agree with team on a style

Replication and transparency

Stata Self-Learning Course

Replication and transparency

Stata Self-Learning Course

Title: Project & title of do-file

Introduction: What does this file do?

Meaningful headings
to structure the file

Comment on decisions

This is only an example. The
exact style is not important, as
long as it is clear.

The granularity of comments should
balance between explanation of the
code and readability: Which information
is needed? Which congests the code?

Marking open/important decisions might
be useful (e.g. //!\\)

Replication and transparency

Indentation for loops,
if-branches etc.

Might use tabs within a line
(but too many can make it worse)

This is only an example. The
exact style is not important, as
long as it is clear.

Line breaks with /// for long
lines of code (esp. graphs)

Replication and transparency

Stata Self-Learning Course

You can also use #delim to change the meaning of line breaks. Normally, line
breaks mean the end of a command. With #delim ; the semicolon means the
end of the command, and you can use line breaks for formatting. #delim cr
changes this back to normal mode

This is only an example. The
exact style is not important, as
long as it is clear.

Readability of your code (and data)

• Names should be descriptive/self-explanatory
– Variables
– Macros
– Files

Ø Agree with team which naming conventions make sense
Example:
– Your data is based on a long questionnaire. Should variables be named

after question number (q_35_2) or “title” (income_job_2)?
– The first is easier to combine with the supplementary material (and

unambiguous)
– The latter is easier to memorize & recognize when coding

Replication and transparency

Stata Self-Learning Course

Readability of your data

Structure & content of the dataset should be clear:

• Use meaningful variable labels & notes (see next slide)
• Use meaningful value labels (and check their consistency)
• Use meaningful missing values where appropriate (e.g., .d for

“don’t know”, .r for “refused” etc.)

• Order important variables such as identifiers, country names,
dates/year at the top

• Check meaningful unique identifier(s)
• Provide further documentation material outside of Stata

Replication and transparency

Stata Self-Learning Course

Readability of your data

Replication and transparency

Stata Self-Learning Course

Notes/characteristics
• Can be very detailed
• But: not everyone knows them
• Characteristics are a more

advanced version of note
help note; help char

Variable labels
• Very easy to find à quick

overview on variable content
• But: Might not want all

information in label, as labels
are used for outputs such as
tables or graphs

Readability: Some remarks

• What’s considered “readable” varies immensely
• Also, there might be trade-offs between what’s considered

readable & what’s practical
For example, some propose to never abbreviate commands. That’s something I
personally wouldn’t consider as a huge increase in readability as the abbreviations are
so common, and I would have to exert some effort to break my habit of using them.
Others find it annoying to put white spaces between “=“, while I find they increase
readability. Then again, some propose to keep do-files short and rather use many do-
files, while others prefer having less files.

• Always try to make your code readable for others. But: There’s
no sense in setting standards if they are not followed through

Replication and transparency

Stata Self-Learning Course

Overview

Replication and transparency

3. Abstraction & automation

Abstraction & automation

Do everything as abstract as possible
• Try to never ever “hard code” values in your code
• Instead, use

– return objects & ereturn objects & system variables

– macros & macro functions

• Use automated (export) tables & graphs whenever possible
– See chapter on advanced graphs & tables and on putdocx

Replication and transparency

Stata Self-Learning Course

Abstraction & automation

Minimize copy & paste: Definitions etc. should be done at one
point only to prevent inconsistencies & errors
• Most obvious example: Use loops for repetitive tasks

• Use the same do-file for definitions which re-occur at
different steps, e.g., creating an index at base- & endline

• For more complex repetitive tasks: Write programs (.ado-files)

Replication and transparency

Stata Self-Learning Course

Abstraction & automation

Use (automated) error checks to make sure everything works as
intended, using for example:
• isid

• confirm

• assert

• merge options

Replication and transparency

Stata Self-Learning Course

Abstraction & automation

• What to do about variable lists?
– Can be useful if variables are consistently ordered/named
– BUT: can also easily lead to errors if order/names change
– Consider using macros or the ds command

• Some commands allow incomplete varnames as input, e.g.,
“med” instead of “medage” (not to be confused with “med*”)

• This can easily lead to mistakes à use set varabbrev off

Replication and transparency

Stata Self-Learning Course

Overview

Replication and transparency

4. Folder structure

Folder structure

Have a clear folder structure & file system

• Separate “raw” from prepared data, inputs from outputs, etc.

• Provide a ReadMe-file in the main folder:
– Contains all information to understand structure & run files

• Master Do-File:
– Contains settings, globals, etc.

– Runs all do-files in the correct order

• Recommended: Also provide data & code to build analysis
dataset from “raw” (de-identified) dataset

Replication and transparency

Stata Self-Learning Course

Folder structure

Decide on a system for version control of files & documentation
• Github (e.g. https://github.com/BITSS/wb_reusable_analytics)

• OSF (https://osf.io/)

• Limited version control with owncloud

• Can use creturn list to capture date/user/system (see next slide)

• Can use datasignature to check whether data changed & cf to see how
datasets differ

Replication and transparency

Stata Self-Learning Course

https://github.com/BITSS/wb_reusable_analytics
https://osf.io/

Folder structure

Directories & paths
• Never use the Windows „\“ in file paths! They don‘t work on Mac & Linux

and cause problems when using globals!
• Two possible ways to define (flexible) filepaths:
A. Set directory (in Master do-file) & use relative filepaths

B. Put directory in a global (in Master do-file) & use global for absolute
filepaths

• Possible ways to get the correct filepath automatically
– profile.do (https://julianreif.com/guide/#stata-profile)
– creturn list: c(username) (see DIME Master Do-file)
– creturn list: c(pwd) (IPA cleaning guide)

Replication and transparency

Stata Self-Learning Course

https://julianreif.com/guide/
https://povertyaction.github.io/guides/cleaning/06%20Coding%20in%20Stata/relativereferences/

Overview

Replication and transparency

5. Version control

Version control of Stata & Stata commands

• Stata version control:
– command “version” to set Stata version (set to the lowest version

possible to ensure widest application)

– might use ieboilstart by DIME to also harmonize settings

• Version control of user-written commands
– There is no automatic version control for user-written commands!

– Save all used user-written commands in a separate folder such that
others can use them in exact the same version you did

– Run them all in the Master do-file

• Examples: Master do-file by DIME / script by Julian Reif

Replication and transparency

Stata Self-Learning Course

https://dimewiki.worldbank.org/ieboilstart

Overview

Replication and transparency

6. References & further reading

References & further reading

This was just a selection. You can find more examples & detailed guidelines here:

• Asjad Naqvi. The Stata Guide: Stata and GitHub Integration. Online version of PDF available at
https://medium.com/the-stata-guide

• Asjad Naqvi. The Stata Guide: The Stata workflow guide. Online version of PDF available at
https://medium.com/the-stata-guide

• DIME Example (including Master do-file): https://github.com/worldbank/rio-safe-space
• DIME Handbook: https://worldbank.github.io/dime-data-handbook/
• Gentzkow, Matthew and Jesse M. Shapiro. 2014. Code and Data for the Social Sciences: A

Practitioner’s Guide. University of Chicago mimeo,
http://faculty.chicagobooth.edu/matthew.gentzkow/research/CodeAndData.pdf, last updated
January 2014.

• IPA Data cleaning guide: https://povertyaction.github.io/guides/cleaning/readme/
• IPA Reproducible Research: Best Practices for Data and Code Management: https://www.poverty-

action.org/publication/ipas-best-practices-data-and-code-management
• J-PAL Guide to Publishing Research Data (online version of PDF available at

https://www.povertyactionlab.org/resource/data-publication)
• Julian Reif: Coding practices: https://julianreif.com/guide/

Replication and transparency

Stata Self-Learning Course

https://medium.com/the-stata-guide
https://medium.com/the-stata-guide
https://github.com/worldbank/rio-safe-space
https://worldbank.github.io/dime-data-handbook/
http://faculty.chicagobooth.edu/matthew.gentzkow/research/CodeAndData.pdf
https://povertyaction.github.io/guides/cleaning/readme/
https://www.poverty-action.org/publication/ipas-best-practices-data-and-code-management
https://www.povertyactionlab.org/resource/data-publication
https://julianreif.com/guide/

