GEORG-AUGUST-UNIVERSITAT
A/ GOTTINGEN

77 3 1

Replication and transparency

Stata Self-Learning Course

Overview

Replication and transparency

1.

o Ok Wb

General remarks
Readability

Abstraction & automation
Folder structure

Version control

References & further reading

Overview

Replication and transparency

1. General remarks

t&-{ Replication and transparency

General remarks

Minimum aim: computational reproducibility

Better: Other people understand your data & code and can
use it

There are no universal guidelines for coding in Stata

What follows is a compilation of different guidelines & own
experience

No “best solution”, no guarantee for completeness

Stata Self-Learning Course

t&-{ Replication and transparency

General remarks

Some key principles

* Code and data should be consistent
» Agree on standards such as naming conventions within your team
* Code and data should be as self-explanatory as possible &
sufficiently commented/documented

» Choose meaningful names for objects, comment workflow/decisions
from the beginning

* Code should be as simple & short as possible

» Only keep what is needed, structure your code

Stata Self-Learning Course

Overview

Replication and transparency

2. Readability

<u%2 Replication and transparency

Readability of your code

sysuse census, clear
foreach var of varlisj
replace 'var'=. if
b

gen urb=popurban/p
gen old_share=pop6
graph twoway (scatim B b if refon==1, msymbol(Oh)) (scatter

old_share urb if r@ion== scatter old_share urb if region==3,
msymbol(Th)) (scat N ion==4, msymbol(Sh)), xti("Share of
urban population") on 65+") legend(lab(1l "NE") lab(2 "N

Cntrl") lab(3 "South' Wghka graphr(c(white))

e Structure your code to enhance readability
— Use line breaks & indentation
— Use * /* /] forheadings & comments
— Break code into multiple lines with /// or #delimit
» Agree with team on a style

Stata Self-Learning Course

= Replication and transparency

&)

7731

S o S S R S R e o R ook
retr Stata Self-Learning Course sssokk
freerk University of Goettingen sekssokk

. B T o B o B = =
Tltle PrOJeCt & tltle Of dO'fIIe —:i:#:x*:t#:x.t:t#.t:-: Rep]_j_catj_on sk ok R ook

S S S S S S R o R o R ook

/¥
This do-file provides some examples for formatting the code.

|ntroduction: What does thIS f||e do’) mmm Which style you use is up to you, but try to stick to it from

Meaningful headings
to structure the file

the beginning and be consistent.
$/

e R OO

—**! Cleaning sk

* 1980 Census data by state
sysuse census, clear

Comment on deCiSionS —) + Data for Maine is wrong, set to missing

The granularity of comments should
balance between explanation of the

code and readability: Which information

is needed? Which congests the code?

Marking open/important decisions mig
be useful (e.g. //'\)

This is only an example. The
exact style is not important, as
long as it is clear.

foreach var of varlist popx* {
replace "var'=. if state=="Maine"

S R OO O R R O
k¥ Preparation sk

* Share of urban population
gen urb=popurban/pop

* Share of population 65+
gen old_share=pop65p/pop

ht

S S R O R o R R ook
*kx Descriptives sokk

* Graph: Share of population 65+ and urban share, by region

graph twoway (scatter old_share urb if region==1, msymbol(0Oh)) (scatter
old_share urb if region==2, msymbol(Dh)) (scatter old_share urb if region==3,
msymbol(Th)) (scatter old_share urb if region==4, msymbol(Sh)), xti("Share of
urban population") yti("Share of population 65+") legend(lab(1l "NE") lab(2 "N
Cntrl") lab(3 "South") lab(4 "North")) graphr(c(white))

Stata Self-Learning Course

= Replication and transparency

7731

B g g e g e s e e S e =
fkxtk Stata Self-Learning Course sk
sk University of Goettingen sk
B B e e e e e
fekecorokx Replication ssokkssckkiok
e g RO R O R RO R O R R OO R o R R o

/*

This do-file provides some examples for formatting the code.
Which style you use is up to you, but try to stick to it from
the beginning and be consistent.

*/

e S
fkx Cleaning sokx

* 1980 Census data by state
sysuse census, clear

* Data for Maine is wrong, set to missing
foreach var of varlist pop*x {

Indentation for loops,
> replace ‘var' = . if state=="Maine"

if-branches etc. }
S 5 S U S S
fkx Preparation sk
i ithi i * Share of urban population
Might use tabs within a line) SRR i

(bUt too many can make it Worse) * Share of population 65+ Line breaks with /// for IOng

ld_sh) 65p/ .
il lines of code (esp. graphs)

FoferpookkfololoR Yok ok ook
*kx Descriptives sk

. . * Graph: Share of population 65+ and urban share, by region
This is only an example. The graph twoway 111
. . (scatter old_share urb if region==1, msymbol(Oh)) /17
exact Style IS not Important, as (scatter old_share urb if region==2, msymbol(Dh)) 11/
i (scatter old_share urb if region==3, msymbol(Th)) /17
IOng as it is clear. (scatter old_share urb if region==4, msymbol(Sh)), 11/
xti("Share of urban population") yti("Share of population 65+") /17

legend(lab(1 "NE") lab(2 "N Cntrl") lab(3 "South") lab(4 "North")) ///
graphr(c(white))

= Replication and transparency

3

You can also use #delim to change the meaning of line breaks. Normally, line
breaks mean the end of a command. With #delim ; the semicolon means the
end of the command, and you can use line breaks for formatting. #delim cr
changes this back to normal mode

#delim ;
graph twoway
(scatter old_share urb if region==1, msymbol(Oh))
(scatter old_share urb if region==2, msymbol(Dh))
(scatter old_share urb if region==3, msymbol(Th))
(scatter old_share urb if region==4, msymbol(Sh))
, xti("Share of urban population") yti(“Share of population 65+")
legend(lab(1 "NE") lab(2 "N Cntrl") lab(3 "South") lab(4 "North"))
graphr(c(white));
#delim cr

This is only an example. The
exact style is not important, as
long as it is clear.

Stata Self-Learning Course

t&-{ Replication and transparency

Readability of your code (and data)

 Names should be descriptive/self-explanatory
— Variables
— Macros
— Files
» Agree with team which naming conventions make sense

Example:

— Your data is based on a long questionnaire. Should variables be named
after question number (g_35_2) or “title” (income_job_2)?

— The first is easier to combine with the supplementary material (and
unambiguous)

— The latter is easier to memorize & recognize when coding

Stata Self-Learning Course

t&-{ Replication and transparency

Readability of your data

Structure & content of the dataset should be clear:

* Use meaningful variable labels & notes (see next slide)
* Use meaningful value labels (and check their consistency)

* Use meaningful missing values where appropriate (e.g., .d for
“don’t know”, .r for “refused” etc.)

* Order important variables such as identifiers, country names,
dates/year at the top

* Check meaningful unique identifier(s)
 Provide further documentation material outside of Stata

Stata Self-Learning Course

t%-(Replication and transparency

Readability of your data

Variable labels

Very easy to find = quick

overview on variable content

But: Might not want all

information in label, as labels
are used for outputs such as

tables or graphs

Notes/characteristics
* (Can be very detailed
e But: not everyone knows them

 Characteristics are a more
advanced version of note

help note; help char

Contains data from /Applications/Stata/ado/base/1/lifeexp.dta

obs: 68
vars: 6

Life expectancy, 1998

storage

display

value

variable name type format label variable label

region byte %12.09 region Region

country str28 %28s Country

popgrowth float %9.09 * Avg. annual % growth
lexp byte %9.0g #* Life expectancy at birth
gnppc float %9.09 * GNP per capita

safewater byte %9.09g &

I * indicated variables have notes I

. notes list _dta

_dta:

1. Source: The World Bank Group, Learning Modules,
2. http://www.worldbank.org/depweb/english/modules/basdata/bdata/

Stata Self-Learning Course

t&-{ Replication and transparency

Readability: Some remarks

 What's considered “readable” varies immensely

* Also, there might be trade-offs between what’s considered
readable & what’s practical

For example, some propose to never abbreviate commands. That’s something |
personally wouldn’t consider as a huge increase in readability as the abbreviations are
so common, and | would have to exert some effort to break my habit of using them.
Others find it annoying to put white spaces between “=“, while | find they increase
readability. Then again, some propose to keep do-files short and rather use many do-

files, while others prefer having less files.

e Always try to make your code readable for others. But: There’s
no sense in setting standards if they are not followed through

Stata Self-Learning Course

Overview

Replication and transparency

3. Abstraction & automation

t%-(Replication and transparency

Abstraction & automation

Do everything as abstract as possible
* Try to never ever “hard code” values in your code

* |nstead, use
— return objects & ereturn objects & system variables

. su pop . su pop

Variable Obs Mean Variable

pop | 50 4518149 pop | 50 4518149
. gen mean_pop = 4518149 . gen mean_pop = r(mean)

— macros & macro functions

// Expenditure in Euro // Expenditure in Euro
gen expenditure_eur = expenditure/16980.80 global euro_idr 16980.80
gen expenditure_eur = expenditure/Seuro_idr

Obs Mean

* Use automated (export) tables & graphs whenever possible
— See chapter on advanced graphs & tables and on putdocx

Stata Self-Learning Course

<u%2 Replication and transparency

Abstraction & automation

Minimize copy & paste: Definitions etc. should be done at one
point only to prevent inconsistencies & errors

Most obvious example: Use loops for repetitive tasks
foreach var of varlist pop* {

replace var' = . if state=="Maine"
note var': "Data for Maine 1is wrong and was set to missing"

'

Use the same do-file for definitions which re-occur at
different steps, e.g., creating an index at base- & endline

use "raw/baseline.dta", clear use "raw/endline.dta”, clear
/¥ YE -
do some cleaning do some other cleaning
*/ */
run "wealth_quintiles.do" run "wealth_quintiles.do"
save "prep/baseline_cleaned.dta", replace save "prep/endline_cleaned.dta", replace

For more complex repetitive tasks: Write programs (.ado-files)

Stata Self-Learning Course

<u%2 Replication and transparency

Abstraction & automation

Use (automated) error checks to make sure everything works as
intended, using for example:

® jsid
* confirm
¢ assert

* merge options

// Assume master set with data from current wave & using with birthdate info etc.
merge 1:1 ID using "baseline_info"

gen check_age = age(birthday,visit_date)
assert age == check_age if !missing(age,check_age)

// Make sure everyone from this wave was registered at baseline
merge 1:1 ID using "baseline_info", assert(2 3)

Stata Self-Learning Course

L%Z Replication and transparency

Abstraction & automation

e What to do about variable lists?

— Can be useful if variables are consistently ordered/named
— BUT: can also easily lead to errors if order/names change
— Consider using macros or the ds command

* Population data for Maine 1is wrong, set to missing

local missing pop poplt5 pop5_17 popl8p popb5p popurban
foreach var of varlist "missing' {

replace var' = . if state=="Maine"

note "var': "Data for Maine is wrong and was set to missing"

¥

// Recode all variables with a certain value label
ds, has(vallabel yesno) // lists all variables with value label yesno
recode ‘r{varlist)' (@=1) (1=2) (-888=.r) (-=999=.d)

 Some commands allow incomplete varnames as input, e.g.,
“med” instead of “medage” (not to be confused with “med*”)
* This can easily lead to mistakes = use set varabbrev off

Stata Self-Learning Course

Overview

Replication and transparency

4. Folder structure

t&-{ Replication and transparency

Folder structure

Have a clear folder structure & file system
* Separate “raw” from prepared data, inputs from outputs, etc.

e Provide a ReadMe-file in the main folder:

— Contains all information to understand structure & run files

e Master Do-File:

— Contains settings, globals, etc.

— Runs all do-files in the correct order

e Recommended: Also provide data & code to build analysis
dataset from “raw” (de-identified) dataset

Stata Self-Learning Course

t&-{ Replication and transparency

Folder structure

Decide on a system for version control of files & documentation
e Github (e.g. https://github.com/BITSS/wb reusable analytics)
* OSF (https://osf.io/)

* Limited version control with owncloud

 Canuse creturn list to capture date/user/system (see next slide)

e Canuse datasignature to check whether data changed & cf to see how
datasets differ

Stata Self-Learning Course

https://github.com/BITSS/wb_reusable_analytics
https://osf.io/

t&-{ Replication and transparency

Folder structure

Directories & paths

* Never use the Windows ,\“ in file paths! They don‘t work on Mac & Linux
and cause problems when using globals!

* Two possible ways to define (flexible) filepaths:

A. Set directory (in Master do-file) & use relative filepaths

cd "/Users/anna/ownCloud/Project”
use '"data/raw/baseline.dta", clear

B. Putdirectoryin a global (in Master do-file) & use global for absolute

filepaths
global dir "/Users/anna/ownCloud/Project"
use "$dir/data/raw/baseline.dta", clear

* Possible ways to get the correct filepath automatically
— profile.do (https://julianreif.com/guide/#stata-profile)

— creturn list: c(username) (see DIME Master Do-file)

— creturn list: c(pwd) (IPA cleaning guide)

Stata Self-Learning Course

https://julianreif.com/guide/
https://povertyaction.github.io/guides/cleaning/06%20Coding%20in%20Stata/relativereferences/

Overview

Replication and transparency

5. Version control

t&-{ Replication and transparency

Version control of Stata & Stata commands

e Stata version control:

— command “version” to set Stata version (set to the lowest version
possible to ensure widest application)

— might use ieboilstart by DIME to also harmonize settings

* \ersion control of user-written commands

— There is no automatic version control for user-written commands!

— Save all used user-written commands in a separate folder such that
others can use them in exact the same version you did

— Run them all in the Master do-file

* Examples: Master do-file by DIME / script by Julian Reif

Stata Self-Learning Course

https://dimewiki.worldbank.org/ieboilstart

Overview

Replication and transparency

6. References & further reading

<L/%7, Replication and transparency

References & further reading
This was just a selection. You can find more examples & detailed guidelines here:

* Asjad Naqvi. The Stata Guide: Stata and GitHub Integration. Online version of PDF available at
https://medium.com/the-stata-guide

* Asjad Naqvi. The Stata Guide: The Stata workflow guide. Online version of PDF available at
https://medium.com/the-stata-guide

* DIME Example (including Master do-file): https://github.com/worldbank/rio-safe-space

* DIME Handbook: https://worldbank.github.io/dime-data-handbook/

* Gentzkow, Matthew and Jesse M. Shapiro.2014.Code and Data for the Social Sciences: A
Practitioner’s Guide. University of Chicago mimeo,
http://faculty.chicagobooth.edu/matthew.gentzkow/research/CodeAndData.pdf, last updated
January 2014.

* |PA Data cleaning guide: https://povertyaction.github.io/guides/cleaning/readme/

* IPA Reproducible Research: Best Practices for Data and Code Management: https://www.poverty-
action.org/publication/ipas-best-practices-data-and-code-management

* J-PAL Guide to Publishing Research Data (online version of PDF available at
https://www.povertyactionlab.org/resource/data-publication)

* Julian Reif: Coding practices: https://julianreif.com/guide/

Stata Self-Learning Course

https://medium.com/the-stata-guide
https://medium.com/the-stata-guide
https://github.com/worldbank/rio-safe-space
https://worldbank.github.io/dime-data-handbook/
http://faculty.chicagobooth.edu/matthew.gentzkow/research/CodeAndData.pdf
https://povertyaction.github.io/guides/cleaning/readme/
https://www.poverty-action.org/publication/ipas-best-practices-data-and-code-management
https://www.povertyactionlab.org/resource/data-publication
https://julianreif.com/guide/

